Toward simulation of full-scale monolithic catalytic converters with complex heterogeneous chemistry
نویسندگان
چکیده
Computational fluid dynamic (CFD) modeling of full-scale catalytic converters with realistic chemistry has remained elusive primarily due to the extreme computational requirements. In this work, a new low-memory coupled implicit solver, based on the conservative unstructured finite-volume method, was utilized to simulate laboratory-scale catalytic converters with implicit coupling between fluid flow, heat transfer (including conjugate heat transfer), mass transfer, and heterogeneous chemical reactions. Steadystate calculations were performed for a catalytic methane–air combustion process with 24 reaction steps and 19 species (8 gas-phase species, 11 surface-adsorbed species), and for a three-way catalytic conversion process with 61 reaction steps and 31 species (8 gas-phase species, 23 surface-adsorbed species). Both calculations were conducted on a single processor for a monolith with 57 channels discretized using 354,300 control volumes. The catalytic combustion simulation was completed in 19 h and required 900 MB of memory, while the three-way conversion simulation required 6 days and 1 GB of memory, indicating that the complexity of the surface reaction mechanism dominates the overall CPU time requirements. Subsequently, the solver was parallelized, and the same catalytic combustion case was simulated for a monolith with 293 channels discretized using 1.27 million control volumes. A 4-node cluster was utilized for the parallel computations, and the parallelization efficiency was found to be about 80%. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Monolithic Three-way Palladium Catalytic Converters for Automobile Exhaust Emission Control
This article presents the research results on production and performance of palladium-only catalytic converters. Monolith is used as the catalyst carrier and gamma alumina as the substrate. Dipping method is used for monolith washcoating. Palladium as the active metal is impregnated on gamma alumina using wet impregnation to produce catalyst samples. The effects of factors such as percent solid...
متن کاملImmobilized Palladium-pyridine Complex on γ-Fe2O3 Magnetic Nanoparticles as a New Magnetically Recyclable Heterogeneous Catalyst for Heck, Suzuki and Copper-free Sonogashira Reactions
A new immobilized palladium-pyridine complex on γ-Fe2O3 magnetic nanoparticles was synthesized and characterized by SEM, TEM, TGA, ICP, XPS, XRD, FT-IR and CHN analysis. The catalytic activity of synthesized catalyst has been investigated in Heck, Suzuki and Sonogashira coupling reactions using a series of aryl halides. The catalyst was easily isolated from the reaction mixture by an external m...
متن کاملMolybdenum-Schiff Base Complex Immobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst
The surface of magnetite nanoparticles as nano-sized solid support was modified with a molybdenum-Schiff base complex to prepare an easily separable heterogeneous catalyst for the epoxidation of olefins. Characterization techniques such as Fourier transform infrared and inductively coupled plasma optical emission spectroscopies, X-ray diffraction, vibrating sample magnetometry, scanning, an...
متن کاملThree-Component and Click Strategy for Synthesis of β-Hydroxy 1,4-Disubstituted 1,2,3-Triazoles Derivatives Catalyzed by 1,4-Dihydroxyanthraquinone-copper(II) Complex onto Nano AlPO4
In this work, copper(II) heterogeneous nanocatalyst supported on modified AlPO4 (Cu(II)-DA@Nano AlPO4) was used for the synthesis of some biological active heterocyclic molecules, particularly for the efficient conversion of a wide range of non-activated terminal alkynes to β-hydroxy 1,4-disubstituted 1,2,3-triazolethrough a three-component “click” reaction at room temperature in water. The reg...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 34 شماره
صفحات -
تاریخ انتشار 2010